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ABSTRACT

Wireless Acoustic Sensor Network (WASN) nodes for noise measurement
and acoustic environment description is a common use in the environmental
measurement within the Smart City. The implementation of the psycho-acoustic
parameters in each WASN node is a tricky problem and currently is the battle horse
in the automatic acoustic environment description. In this work, the implementation
and the improvement of the algorithms used for each psycho-acoustic parameter is
described and the performance of the implementation measured.
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1. INTRODUCTION

Noise is a problem in urban environments that influences on the health of citizens,
ranging from children’s cognition, cardiovascular diseases, insomnia, etc. to simple
headaches and lack of concentration [1]. Recognizing this as a major problem, the
European Commission adopted in 2002 an Environmental Noise Directive (END)
2002/49/EC [2], requiring main cities with more than 250.000 inhabitants, to gather real
data on noise exposure in order to produce local action plans and to provide accurate
mappings of noise pollution levels.

These measurements are mainly based on the equivalent sound pressure level (called
Leq). However, Leq is not enough in terms of Psycho-Acoustic Annoyance (PA) due to
the fact that similar values for Leq can lead to different feelings of the noise, perceived
by different people, so failing to provide information related to the subjective annoyance
[3] and their psychoacoustic properties. This is due to the lack of information from Leq

regarding the frequency characteristics. In addition, there are many sources of noise with
low levels of Leq that produce a disgusting annoyance and even worse than the ones with
high values of Leq, for instance an isolated tone from a mechanic vibration. To define
metrics based on the human hearing system, different studies and techniques have been
carried out and different methods have been defined in order to estimate the subjective
annoyance (such as Zwicker’s [4], Moore’s [5]. . . ). Nevertheless, all of them require high
computational costs due to the complexity of the analysis and required signal processing.
In particular one of the most commonly used and accurate is the Zwicker’s model, that
provides enhanced indexes, such as Loudness (L), Sharpness (S), Fluctuation Strength
(FS) and Roughness (R), that allow the estimation of an accurate and precise subjective
PA, recently regulated by ISO 12913 [6] [7], instead of just considering Leq.

In this scenario, Wireless Acoustic Sensor Networks (WASN) based on Internet of
Things (IoT) are a very interesting tool, for instance to deploy a distributed sensor systems
on smart cities for urban noise monitoring, allowing the identification of acoustically
problematic areas and critical sound sources in real time, as well as the possibility to
react efficiently against such health hazards. But with these systems, the number of
samples both in time and space increase, as well as the computational complexity, making
the construction of these mentioned subjective maps a tough and complex task. Thus,
WASNs fail if we want to process the previous parameters in near real time for an accurate
soundscape profiling. Thus, the goal of this paper is focused on an efficient and accurate
implementation of these indexes or psycho-acoustic parameters to monitor PA within this
scenario, that is WASN and IoT.

The rest of the paper is structured as follows. Section 2 discusses the state of the
art. Section 3 expounds the Zwicker’s annoyance model. Section 4 describes the
implementation steps. Section 5 exhibits the results obtained. Section 6 concludes the
paper.

2. STATE OF THE ART

Psychoacoustic research has been widely studied and several standards for evaluating
subjective annoyance and calculating psychoacoustic parameters have been defined in
[8] [9]. For instance, regarding Psycho-Acoustic Annoyance (PA) models, in [10], the
Zwicker’s annoyance model [4] is used for soundscape categorization to determine how
an acoustic environment sounds like, using manually collected noise samples.



In addition, several works have already considered the use of WASN for noise
monitoring. In [11] and [12], the authors evaluate a WASN to monitor road traffic noise
measured by the Leq,T [13]. In [14] and [15] show a WASN deployed in Ostrobothnia
(Finland), reporting different tests to evaluate the noise impact. Other references
such as [16], [17] and [18] use the mobile phones for noise pollution monitoring.
Although the results are interesting, in our opinion the lack of information about the
recording conditions prevents getting accurate noise measurements. When assessing
noise indicators, the location of the measuring devices must follow defined rules [2]. In
the previous references [11] - [18], the measurements are based on the Leq,T , even with
the A-weighting filter (ITU-R 468) with LeqA,T , that is a frequency-selective filter picking
up the frequency range around 3-6 kHz, to which the human ear is most sensitive. These
parameters are measured in dB and dBA respectively. Nevertheless, these parameters do
not provide information about the subjective annoyance from the point of view of human
perception [4] [10] [19].

3. ZWICKER’S PSYCHOACOUSTIC MODEL

Psycho-acoustic metrics are an alternative to express people’s feelings by subjective
measures. In this section, we describe the Zwicker’s annoyance model [4] for a general
purposes by measuring Psycho-Acoustic Annoyance (PA),Loudness (L), Sharpness (S),
Fluctuation Strength (FS) and Roughness (R). This model is based on the anatomy of the
human hearing. When complex sounds are being considered, the frequency spectrum of
the psycho-acoustic metrics is made in terms of Critical Bands (CB) [20], that refers to
the frequency bandwidth of the auditory filter created by the cochlea, the sense organ
of hearing within the inner ear. The human hearing combines the sound stimuli which
are situated in close proximity of each other in terms of frequency into particular CB.
When serializing these CBs, two different frequency scales are created, called the CB
rate scales, one measured in the unit Bark and the other one measured in Equivalent
Rectangular Bandwidth (ERB) [4]. The Bark scale is defined as the mapping from the
physical frequency scale to the CB rate scale from 1 to 28. The ERB scale is closely
related to the CB as well, but it is defined analytically and more smoothly behaved than
the Bark scale.

Next, we show the numerical expressions used to estimate the different parameters
within the Zwicker’s Psychoacoustic Model, defined to measure PA, L, S, R and F [4].
The signal processing that these parameters require, is out of the scope of this paper
although the detail of their implementations are shown in the next Section 4. It must be
stressed that these parameters are measured using different temporal window sizes over
the audio signal.

L =

28Bark∑
z=0

L(z) · ∆z (1)

Loudness (L) as shown in equation 1, is the value that deals with the sound volume
(intensity sensations), measured in Sones with a linear scale. It is standardized in ISO
532B and DIN45631. The process used to calculate L is based on the Specific Loudness
(L(z) or L contribution for each CB, where z identifies the CB number), measured in
Sone/Bark. The total L is the result of the different contributions. ∆z is the bandwidth of
each Bark. In Figure 1 we show a flow diagram of this parameter, that it will explained in



the next section.

S = 0.11 ·
∑28Bark

z=0 L(z) · e0.171·z · z · ∆z
L

(2)

Sharpness (S) as shown in equation 2, is a value of sensory human perception of
unpleasantness in sounds that is caused by high frequency components. It is measured
in Aures in a linear scale.

R = 1.596 ·
33 ERB∑
i=0.5

(g(zi) · mi · ki−2 · ki)2 (3)

Roughness (R) as shown in equation 3, it describes the perception of the sound
fluctuation even when L or Leq,T remains unchanged. It analyzes the effects with different
degrees of frequency modulations (around 70Hz) in each CB. The basic unit for R is
Asper. In this case, this parameter is better described in ERB. Thus for each ERB i, g(z)
is an arbitrary weighting function, m is the modulation depth of each ERB and k is the
cross-correlation between the envelopes of the ERB with indexes i and i − 2. In Figure 2
we show a flow diagram of this parameter, that it will explained in the next section.

F = 0.3493 ·
33 ERB∑
i=0.5

(g(zi) · mi · ki−2 · ki)2 (4)

Fluctuation Strength (F) as shown in equation 4, it describes how strongly or weakly
sounds fluctuate. It depends on the frequency and depth of the L fluctuations, around 4
Hz in each ERB. It is measured in Vacils.

PA = L(1 +

√
(
3(S − 1.75)log(L + 10)

4
)2 + (

2.18(0.4F + 0.6R)
L0.4 )2) (5)

Finally, with all of them we can estimate the Psycho-acoustic Annoyance (PA) as
shown in equation 5, it is a perceptual attribute that allows an objective quantification
from the physical characteristics of the signal, based on the mean values of L, S, R and F.

A flow diagram of the implementation of L can be seen in Figure 1. Also, Figure 2
shows the flow diagrams for R. The details are given in the next section.

4. MODEL IMPLEMENTATION

To improve the calculation of the different psycho-acoustics parameters, all of them
have been broken down into simpler steps in order to find out similarities between them.
As a result of this analysis, we made a classification between the parameters calculated
in time domain (in particular R and F) and the ones calculated in frequency domain (in
particular L and S). As result of this classification, it has been decided to use two different
types of windows. On one side Blackmann windows are used for time processing and on
the other side Hanning windows are used for frequency processing.

The model used for the L calculation is shown in Figure 1, according to the DIN-
45631. In this figure the input signal is sampled and windowed each second with a
Hanning window. Then a Frequency Fourier Transform (FFT) is applied to get the sound
pressure levels, that latter are filtered out with 1

3 octave filters to obtain these levels, named
P(z) being z each Bark. Then, these outputs are processed according the DIN-45631 to
calculate the specific loudness, named L(z) per Bark. Notice that in order to speed the



Figure 1: Loudness (L) algorithm standarized by ISO-532B and DIN-45631



Figure 2: Roughness (R) algorithm

calculation of L, the conversion of the signal to 1
3 octave bands has been done performing

a filtering, which turns out to be a matrix multiplication due to the frequency domain.
Once we know L and the specific loudness, named L(z) per Bark, following the

equation 2, it allows the calculation of S with a near null computational cost, since it is
enough to apply the S formula to the specific loudness.

The model used for the R is the defined by V.Jourdes [21] based on the Optimised
Model of P. Daniel and R. Weber [22] and shown in Figure 2. The main characteristic of
this model is the use of the ERB scale (instead of Barks) using Gammatone filters. In this
figure the input signal is sampled and windowed each second with a Blackmann window,
that then it is filtered by the outer middle ear bandpass filter. Then this is processed
using Gammatone filter banks to obtain 33 ERB, named ei(t), being i each ERB. Then for
each band i, we calculate each continuous value (DC) called h0i as well as the envelope
of each ei(t) called hBPi(t), that is a BandPass (BP) using an Infinite Impulse Response
(IIR) weighthing function. From these values for each band i, we calculate mi that is the
modulation depth using the Root Mean Square (RMS) as follows:

mi = RMS (
hBPi(t)

h0i
) (6)

This modulation depth then is calibrated according to each band i. Finally, we perform
a shifted correlation between their modulation depths to obtain cross-correlation ki,
between the envelopes of the ERB with indexes i and i − 2. Finally, using the equation 3,
we calculate R.

Making use of the similarities between R and F, it is possible to adjust the R model to
calculate the F, by changing only the Infinite Impulse Response (IIR) weighthing function



above mentioned for R calculation, and then following the equation 4. This weighting
function has been extracted from the proposed model by Osses Vecchi [23].

Notice that in order to speed these parameters (R and F), the initial steps, from the
input signal till the Gammatone filter bank, are equal and they are calculated once. Thus,
once this is done, we apply the weighting function according to each model as explained
above, and calculate the corresponding modulation depths m and cross correlation factors
k for each psycho-acoustic parameter R and F.

It must be highlighted that another improvement for the calculation of R and F, can be
done in the shifted correlation shown in Figure 2. This function shifts the signals in order
to see the shift produced by the Gammatone filter bank. This is done by doing shifts of 10
samples and performing the correlation in order to find out the maximum value. Just in
case, the value found is 1 or almost 1 (for instance 0.999) we stop searching other shifts,
as the maximum has already been achieved.

5. RESULTS

In this section, we evaluate the implementation of the Zwicker’s annoyance model [4]
on different platforms and languages.

Regarding the platforms, on one hand, we use small board computers (SBC), in
particular on RaspBerry Pi models 3B and 3B+. These models have 4 cores. Notice that
these models could fit in a WASN for psycho-acoustic annoyance monitoring. On the
other hand, we use a computer as a baseline. This computer is an i7-7700HQ @ 3.5GHz
and 16GB DDR4 of RAM with 8 cores. The RPi 3B uses a ARM Cortex-A53 @ 1.2GHz
and 1GB LPDDR2 of RAM and RPi 3B+ uses a ARM Cortex-A53 @ 1.4GHz and 1GB
LPDDR2 of RAM. All these platforms uses a Linux 64bit operating system. It must be
stressed that for a fair comparison between the different platforms above mentioned, we
will use always only 4 core in each processor for the different alternatives.

Regarding the languages used, the different algorithms have been written in
C++/Python and Matlab of The Mathworks Inc. In this case, Matlab is interpreted
language used as a baseline. Python is an interpreted language and a reference in IoT
research. C++ is a compiled and efficient language in terms of computational time. It
must be noticed that in the C++/Python option, the main program is based on Python and
we use C++ in order to implement a Python library that performs all the tough processing
from each pyscoacoustic parameter, in an efficient way by using the linear algebra library
called Armadillo [24]. Python also is in charge of capturing audio and showing the
results. With this combination C++/Python, we get a fast and powerful program due to
the C++ at the same time we maintain the flexibility of Python.

Table 1 and Table 2 show a performance comparison in terms of computational time per
each second of audio recording between Matlab and C++/Python running on the computer
and the C++/Python implementation running of RPi for the different psycho-acoustic
parameters. In order to obtain the most realistic results, 100 random samples of daily
sounds of one second of duration have been used. Furthermore, as the C++ compiler has
the possibility to choose the level of optimisation that runs, it has been decided to perform
the calculations, both the optimisation disabled (enabled by option -O0 and shown in
Table 2), and the optimisation completed (enabled by option -O3 and shown in Table 1).
These adjustments lead to use a single core (disabled, option-O0) or the use of all of them
in parallel (option -O3). Notice that the code has not been programmed using threads or
any kind of parallelization. This is one of the outcomes of using Armadillo library.



We have managed to overcome the calculation in real time in both Matlab and C++

using a modern computer as well as running it using Raspberry Pi family. The best
performance computing time is shown for the C++ implementation using the complete
optimisation option.

Table 1: Time comparison between different devices and programming languages, without
optimization enabled

L S R & F Total R F
Linux 0.081 0.000 0.527 0.534 0.298 0.240
RPi3B 0.047 0.000 5.617 5.664 3.258 2.431

RPi3B+ 0.041 0.000 4.851 4.891 2.803 2.093

Table 2: Time comparison between different devices and programming languages, with
optimization

L S R & F Total R F
Matlab 0.058 0.000 0.638 0.699 0.288 0.404
Linux 0.003 0.000 0.235 0.238 0.128 0.235
RPi3B 0.018 0.000 1.462 1.479 0.849 0.742

RPi3B+ 0.017 0.000 1.389 1.406 0.794 0.694

6. CONCLUSIONS

In this paper we have introduced an accurate implementation of the Zwicker’s
Psychoacoustic model, to monitor the Psycho-Acoustic Annoyance. This model is one
of the most commonly used and accurate. Nevertheless, as it is stated and shown in
the paper, it requires high computational costs due to the complexity of the analysis
and required signal processing. Due to this complexity, it fails if we want to run it one
Wireless Acoustic Sensor Network using low cost platforms or small board computers,
such as RaspBerry Pi family. For this reason, we have shown an extremely efficient and
optimized code implementation of this model.

However, it must be noticed that while the results in this paper showed the feasibility
of the implementation of the Zwicker’s Psychoacoustic model on the RPi platforms,
they also illustrated the practical limitations and outcomes of these platforms. But these
outcomes can be overcame by using new trends based on edge and fog computing as well
as using clustering techniques that are suggested as future work.
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